[SS] Fourier Transform Table

2023. 10. 13. 10:51·.../Signals and Systems
728x90
728x90

0. Fourier Transform Table

  $x(t)$ $X(\omega)$  
1 $e^{-a t}u(t), a>0$ $\frac{1}{a+j\omega}$ ref.
2 $e^{a t} u(-t) , a>0$ $\frac{1}{a-j\omega}$  
3 $e^{-a \vert t\vert}, a>0$ $\frac{2a}{a^2+\omega^2}$  
4 $te^{-a t}u(t), a>0$ $\frac{1}{ (a+j\omega)^2}$  
5 $t^ne^{-a t}u(t), a>0$ $\frac{n!}{ (a+j\omega)^{n+1}}$  
6 $\delta(t)$ $1$ ref.
7 $1$ $2\pi \delta(\omega)$ ref.
8 $e^{j\omega_0t}$ $2\pi \delta (\omega-\omega_0) $ ref.
9 $\text{sgn}(t)$ $\frac{2}{j\omega}$ ref.
10 $u(t)$ $\pi \delta(\omega) +\frac{1}{j\omega}$ ref.
11 $\cos \omega_0 t$ $\pi \left[ \delta(\omega+\omega_0) + \delta (\omega-\omega_0) \right]$ ref.
12 $\sin \omega_0 t$ $j\pi \left[ \delta(\omega+\omega_0) - \delta (\omega-\omega_0) \right]$ ref.
13 $\cos \omega_0 t u(t)$ $\frac{\pi}{2} \left[ \delta(\omega+\omega_0) + \delta (\omega-\omega_0) \right] +\frac{j\omega}{\omega_0^2-\omega^2}$  
14 $\sin \omega_0 t u(t)$ $\frac{\pi}{2j} \left[ \delta(\omega+\omega_0) - \delta (\omega-\omega_0) \right] +\frac{\omega_0}{\omega_0^2-\omega^2}$  
15 $e^{-at} \sin \omega_0t u(t), a>0$ $ \frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$  
16 $e^{-at} \cos \omega_0t u(t), a>0$ $ \frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$  
17 $ \displaystyle \sum_{n=-\infty}^{\infty} \delta(t-nT_s)$ $ \displaystyle \omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega-n\omega_0) , \omega_0=\frac{2\pi}{T_s}$ ref.
18 $ \text{rect}_\tau (t)$,
너비가 $\tau$인 rectangle pulse
$ \tau \text{sinc}\left ( \frac{\omega \tau}{2\pi}\right)$ ref.
19 $ \frac{W}{2\pi} \text{sinc}\left ( \frac{W}{2\pi}t\right)$ $\text{rect}_W (\omega)$,
너비가 $W$인 rectangle pulse
ref.
20 $ \Delta \left ( \frac{t}{\tau}\right)$
기울기가 $\frac{1}{\tau}$인 삼각파
$ \tau \text{sinc}^2 \left ( \frac{\omega \tau}{2\pi}\right)$  
21 $ e^{-\frac{t^2}{2\sigma ^2}}$ $ \sigma \sqrt{\pi} e^{-\frac{\sigma^2\omega^2}{2}}$  

 



1. 같이보면 좋은 자료들

2023.10.05 - [분류 전체보기] - [SS] The Spectrum of Continuous Time Signals

 

[SS] The Spectrum of Continuous Time Signals

시작하기Spectrum이란2023.10.03 - [.../Signals and Systems] - [SS] Spectrum 이란? [SS] Spectrum 이란?Spectrum은 어떤 복잡한 대상(or signal)을 해당 대상(or signal)을 구성하고 있는 단순한 여러 개의 대상(or singal)로

dsaint31.tistory.com


 

'... > Signals and Systems' 카테고리의 다른 글

[SS] CTFT Properties : Modulation Theorem  (0) 2023.10.19
[SS] Fourier Transform of Impulse Function (Dirac Delta)  (0) 2023.10.13
[SS] 1장 관련 Quiz  (1) 2023.10.06
[SS] Separable signal  (1) 2023.10.06
[SS] 1장 관련 Quiz (풀이포함)  (2) 2023.10.05
'.../Signals and Systems' 카테고리의 다른 글
  • [SS] CTFT Properties : Modulation Theorem
  • [SS] Fourier Transform of Impulse Function (Dirac Delta)
  • [SS] 1장 관련 Quiz
  • [SS] Separable signal
dsaint31x
dsaint31x
    반응형
    250x250
  • dsaint31x
    Dsaint31's blog
    dsaint31x
  • 전체
    오늘
    어제
    • 분류 전체보기 (746)
      • Private Life (13)
      • Programming (192)
        • DIP (110)
        • ML (26)
      • Computer (119)
        • CE (53)
        • ETC (33)
        • CUDA (3)
        • Blog, Markdown, Latex (4)
        • Linux (9)
      • ... (351)
        • Signals and Systems (103)
        • Math (172)
        • Linear Algebra (33)
        • Physics (42)
        • 인성세미나 (1)
      • 정리필요. (54)
        • 의료기기의 이해 (6)
        • PET, MRI and so on. (1)
        • PET Study 2009 (1)
        • 방사선 장해방호 (4)
        • 방사선 생물학 (3)
        • 방사선 계측 (9)
        • 기타 방사능관련 (3)
        • 고시 (9)
        • 정리 (18)
      • RI (0)
      • 원자력,방사능 관련법 (2)
  • 블로그 메뉴

    • Math
    • Programming
    • SS
    • DIP
  • 링크

    • Convex Optimization For All
  • 공지사항

    • Test
    • PET Study 2009
    • 기타 방사능관련.
  • 인기 글

  • 태그

    numpy
    Optimization
    Vector
    math
    SIGNAL
    Probability
    Convolution
    linear algebra
    fourier transform
    Python
    Term
    function
    DIP
    signal_and_system
    인허가제도
    Programming
    SS
    cv2
    opencv
    signals_and_systems
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.3
dsaint31x
[SS] Fourier Transform Table
상단으로

티스토리툴바