어떤 성질인가?
$$x(t)e^{j\Omega_0}t \leftrightarrow X(\Omega-\Omega_0)$$
- $x(t)$ : time domain function
- $X( \Omega)$ : Fourier representation, Foruier Transform
- $\Omega_0$ : Frequency Shift (constant)
Frequency Domain에서 $\Omega_0$ 만큼 shifting 시킬 경우,
Time Domain에서는 $e^{j\Omega_0}t$가 곱해지게 된다.
증명
$$\begin{aligned} \frac{1}{2\pi} \displaystyle \int^\infty_{-\infty} X(\Omega - \Omega_0)e^{j\Omega}t d\Omega &= \frac{1}{2\pi}\displaystyle \int^\infty_{-\infty}X(\omega)e^{j(\omega+\Omega_0 )t}d\omega \quad \leftarrow \omega=\Omega-\Omega_0 \\ &= e^{j\Omega_0t} \left\{ \frac{1}{2\pi} \displaystyle \int^\infty_{-\infty} X(\omega) e^{j\omega t} d\omega \right\} \\ &=e^{j\Omega_0 t} \left\{ x(t) \right\} \\ &= x(t) e^{j\Omega_0 t} \end{aligned}$$
관련자료
2023.10.13 - [.../Signals and Systems] - [SS] A Short Table : Fourier Transform
2022.09.28 - [.../Signals and Systems] - [SS] Fourier Transform of Complex Exponential Function
'... > Signals and Systems' 카테고리의 다른 글
[SS] Eigenmode, Eigenvector, and System mode (0) | 2024.09.23 |
---|---|
[SS] Wavelet Transform (1) | 2024.09.02 |
[SS] DFT에서 Aliasing을 피하기 위한 N은? (0) | 2023.12.07 |
[SS] Fourier Analysis: 4가지 Fourier Transform 비교 (0) | 2023.12.07 |
[SS] Discrete Fourier Transform (DFT) (1) | 2023.12.03 |