[Math] Basis

2024. 10. 28. 12:24·.../Math
728x90
728x90

기저(Basis)는
vector space (또는 function space) 에서
모든 요소(Element)를 나타내기 위해
필요한 최소한의 (선형)독립적인 요소 집합
(vector set or function set).

  • Basis (기저)는 벡터 공간 (또는 함수 공간)의 구조와 차원을 이해하는 데 필수적
  • 기저들의 선형 결합을 통해 공간의 모든 요소를 표현할 수 있음.
더보기

2022.09.30 - [.../Math] - [LA] \mathbb{R}^n, R-n : Vector Space

 

[LA] \mathbb{R}^n, R-n : Vector Space

$\mathbb{R}^n$은 일종의 set임.$n$개의 entry를 가지는 모든 vector들로 구성된 set(집합).$\mathbb{R}$은 real number를 의미한다.참고로, $\mathbb{R}^2$의 경우,2차원 vector space이면서2차원 coordinates로 볼 수 있으며,

dsaint31.tistory.com



Basis 의 조건

Basis 가 되기 위해서는 다음 두 가지 조건을 만족해야 함.

  1. 선형 독립성(Linear Independence):
    • 기저 벡터 집합의 각 벡터는 다른 벡터들의 선형 결합으로 나타낼 수 없어야 함.
    • 즉, 모든 기저 벡터가 서로 (선형)독립적.
  2. 벡터 공간을 생성(Span):
    • basis들의 선형 결합으로 벡터 공간의 모든 벡터를 표현할 수 있어야 함.
    • 이를 벡터 공간을 생성(span)한다고 하며,
    • basis를 통해 전체 공간을 커버할 수 있음.
더보기

2024.02.16 - [.../Math] - [LA] Linear Independence (Linearly Indendent)

 

[LA] Linear Independence (Linearly Indendent)

Ref. : Linear Algebra and its applications, 5th ed., David C. Lay, Chapter 1.Linear IndependenceAn indexed set of vectors $\left\{ \textbf{v}_1, \textbf{v}_2, \cdots,\textbf{v}_p \right\}$ in $\mathbb{R}^n$ is said to be linearly independent if the vector

dsaint31.tistory.com

 

2024.05.29 - [.../Linear Algebra] - [LA] Span (생성)

 

[LA] Span (생성)

Span주어진 Vector들 (=Vector set)에 대한 Span은해당 vector들의 Linear Combination을모두 포함하고 있는 Vector Set을 의미한다.참고로, 위의 정의에서 Linear Combination을 Affine Combination으로 바꾸면, Affine Hull(or A

dsaint31.tistory.com



선호되는 basis(기저)의 특징: 직교성(Orthogonality)

Basis는 일반적으로 직교성(orthogonality)을 가진 벡터(or Function)들로 구성하는 것이 선호됨.

직교 기저(orthogonal basis)란
각 basis가 서로 직교하여 inner product가 0이 되는 basis임.


Orthogonal basis를 사용할 때의 장점은 다음과 같음.

  1. 계산의 단순화:
    • 직교 기저는 basis 간의 내적이 0이므로, 특정 방향의 성분을 쉽게 계산할 수 있음.
    • 이를 통해 좌표 변환, 투영 등 다양한 계산이 단순화됨.
  2. 정규 직교 기저(Orthonormal Basis):
    • 직교 기저에서 각 벡터의 norm이 1이라면, 이를 정규 직교 기저 (Orthonormal Basis)라고 부름.
    • 정규 직교 기저는 벡터의 크기를 유지하면서 변환을 수행할 수 있어, 길이 계산이나 분산 분석에 유리.
  3. 해석의 용이성:
    • 직교 기저를 사용하면 벡터 공간을 이해하기 쉽고, 벡터 간의 관계를 명확히 파악할 수 있음.
      예를 들어, 주성분 분석(PCA)에서 직교 기저를 통해 데이터의 분산이 최대가 되는 축을 찾아냄.
더보기

2022.09.21 - [.../Signals and Systems] - [SS] Orthogonal Function : Complex Exponential Function

 

[SS] Orthogonal Function: Complex Exponential Function

0. Fourier Transform의 Basis Function지수 함수 (정확히는 복소지수함수)는 대표적인 orthogonal function으로 Fourier transform의 basis로 사용이 된다.구간 $T$에서 Orthogonal function인 경우, 해당 구간에서 inner product

dsaint31.tistory.com



예시: 데카르트 좌표계에서의 기저

2차원 유클리드 공간 $\mathbb{R}^2$에서는 표준 기저(Standard Basis)가 사용되며,

이 basis는 각각의 좌표축 방향을 나타내는 두 벡터로 구성됨.

  • 표준 기저 벡터:

$$
\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

 

이 경우, 벡터 $\mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}$를 표준 기저 벡터로 표현하면 다음과 같음.

 

$$
\mathbf{v} = x \mathbf{e}_1 + y \mathbf{e}_2
$$

 

여기서 $x$와 $y$는 각각 벡터 $\mathbf{v}$의 $\mathbf{e}_1$ 방향과 $\mathbf{e}_2$ 방향의 component임.

이 표준 기저는 직교하며, 서로 독립적이므로 벡터 공간 ( $\mathbb{R}^2$ )의 모든 벡터를 표현할 수 있음.


Basis와 차원

기저 벡터의 개수는 벡터 공간의 차원을 나타냄.

  • 예를 들어, 2차원 공간에서는 두 개의 기저 벡터가 필요하고,
  • 3차원 공간에서는 세 개의 기저 벡터가 필요함.

즉 차원(dimension)은 해당 벡터 공간을 표현하는 데 필요한 최소한의 벡터 개수에 해당함.

 

Dimension과 비슷한 개념으로는 matrix의 속성인 Rank 가 있음.

2024.07.08 - [.../Linear Algebra] - [LA] Rank: matrix의 속성

 

[LA] Rank: Matrix의 속성

Definition: Rank ◁ matrix 속성The rank of a matrix $A$, denoted by rank $A$,is the dimension of the column space of $A$.Matrix를 이루는 Column Vectors에서 Linearly Independent 인 것들의 수를 의미Row Space의 Dimension 의 경우를 강

dsaint31.tistory.com


Basis의 활용

기저는 벡터 공간에서 벡터를 표현하거나, 좌표 변환을 수행하는 데 사용됨.

대표적인 활용 예시는 다음과 같습니다.

  • 주성분 분석(PCA, Principal Component Analysis): 데이터의 분산이 최대인 방향을 기준으로 새로운 직교 기저를 만들어 차원을 축소.
  • 푸리에 변환: 사인 및 코사인 함수들을 정규 직교 기저로 사용하여 주기 신호를 주파수 성분으로 분해.
  • 좌표 변환: 물체의 회전, 이동을 포함한 변환을 수행할 때, 새로운 기저를 정의해 벡터들을 변환된 좌표계에서 표현할 수 있음.

같이보면 좋은 자료들

2022.03.28 - [.../Math] - [Math] Vector (1)

 

[Math] Vector (1)

Scalar오직 magnitude(크기)만을 가지는 물리량.숫자 하나.ndim=0, rank=0Vectormagnitude와 direction을 가지는 물리량.ordered list of numbers.ndim=1, rank=1로 vector가 표현됨. : vector는 다차원 vector space의 특정 point를

dsaint31.tistory.com


2025.01.21 - [.../Linear Algebra] - [Summary] Linear Algebra (작성중)

 

[Summary] Linear Algebra (작성중)

ML 을 위해 Linear Algebra 공부시 참고할만한 책더보기전체적으로 공부를 한다면 다음을 권함.Linear Algebra and Its Application, 5th ed 이상, David C. Lay5th ed. 는 웹에서 쉽게 pdf도 구할 수 있음.개인적으로 Str

dsaint31.tistory.com

 

...


 

'... > Math' 카테고리의 다른 글

[Math] Binomial Theorem (이항정리)  (0) 2025.01.04
[Math] Exponential Moving Average (EMA)  (0) 2024.11.22
[Math] Inner Product (or Hermitian Inner Product, 내적)  (5) 2024.10.28
[Statistics] Tail, Head, and Distribution (w/ Moment)  (0) 2024.09.26
[Math] Algebraic Properties  (0) 2024.07.20
'.../Math' 카테고리의 다른 글
  • [Math] Binomial Theorem (이항정리)
  • [Math] Exponential Moving Average (EMA)
  • [Math] Inner Product (or Hermitian Inner Product, 내적)
  • [Statistics] Tail, Head, and Distribution (w/ Moment)
dsaint31x
dsaint31x
    반응형
    250x250
  • dsaint31x
    Dsaint31's blog
    dsaint31x
  • 전체
    오늘
    어제
    • 분류 전체보기 (748)
      • Private Life (13)
      • Programming (56)
        • DIP (112)
        • ML (26)
      • Computer (119)
        • CE (53)
        • ETC (33)
        • CUDA (3)
        • Blog, Markdown, Latex (4)
        • Linux (9)
      • ... (351)
        • Signals and Systems (103)
        • Math (172)
        • Linear Algebra (33)
        • Physics (42)
        • 인성세미나 (1)
      • 정리필요. (54)
        • 의료기기의 이해 (6)
        • PET, MRI and so on. (1)
        • PET Study 2009 (1)
        • 방사선 장해방호 (4)
        • 방사선 생물학 (3)
        • 방사선 계측 (9)
        • 기타 방사능관련 (3)
        • 고시 (9)
        • 정리 (18)
      • RI (0)
      • 원자력,방사능 관련법 (2)
  • 블로그 메뉴

    • Math
    • Programming
    • SS
    • DIP
  • 링크

    • Convex Optimization For All
  • 공지사항

    • Test
    • PET Study 2009
    • 기타 방사능관련.
  • 인기 글

  • 태그

    numpy
    linear algebra
    signals_and_systems
    Programming
    Vector
    function
    DIP
    math
    signal_and_system
    opencv
    인허가제도
    Python
    fourier transform
    Term
    SS
    Convolution
    Probability
    cv2
    SIGNAL
    Optimization
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.3
dsaint31x
[Math] Basis
상단으로

티스토리툴바