1. Limit Laws
Assume that $S\subseteq \mathbb{R}^n$ and that $\textbf{a}$ is a point in $\textbf{R}^n$ is a limit point of $S$
(for example, an interior point of $S$).
Further assume that $f,g:S\to \mathbb{R}$ are functions and
$L$,$M$ are numbers such that
$$\lim_{\mathbf x \to \mathbf a}f(\mathbf x) = L,
\qquad
\lim_{\mathbf x \to \mathbf a}g(\mathbf x) = M.$$
Then
$$\lim_{\textbf x \to \textbf a}[f(\textbf x)+ g(\textbf x)] = L+M, \\\\ \lim_{\textbf x \to \textbf a}[f(\textbf x) g(\textbf x)] = LM, \\\\ \displaystyle \frac{\lim_{\textbf x \to \textbf a}f(\textbf{x})}{\lim_{\textbf x \to \textbf a}g(\textbf{x})}=\frac{L}{M},\text{ where } \lim_{\textbf x \to \textbf a}g(\textbf{x}) \ne 0 \\\\ \lim_{\textbf x \to \textbf a}cf(\textbf{x}) = c\lim_{\textbf x \to \textbf a}f(\textbf{x}) \text{ and } \lim_{\textbf x \to \textbf a}cg(\textbf{x}) = c\lim_{\textbf x \to \textbf a}g(\textbf{x}) \text{ ,where } c \text{ is a constant scalar} $$
참고 : Limit Point
The point $\textbf{a} \in \mathbb{R}^n$ is a limit point of set $S$ if and only if
$$\begin{equation}\label{limitpoint} \forall \delta>0, \quad
\exists \mathbf x\in S \quad\mbox{ such that }\quad
0 < |\mathbf x - \mathbf a|<\delta.
\end{equation}$$
https://dsaint31.tistory.com/536#Definition%--of%--Limit%--point
2. Squeeze Theorem (샌드위치 정리)
Assume that $S\subseteq \mathbb{R}^n$ and
that $\textbf{a}$ is a point in $\textbf{R}^n$ is a limit point of $S$ (for example, an interior point of $S$).
Further assume that $f,g,h:S\to \mathbb{R}$ are functions and
there exists real numbers $\delta > 0$ and $L$ such that
$$f(\mathbf x)\le g(\mathbf x) \le h(\mathbf x)\mbox{ for all }\mathbf x\in S \mbox{ such that }0<|\mathbf x-\mathbf a|<\delta$$
and
$$\lim_{\mathbf x \to \mathbf a}f(\mathbf x) = \lim_{\mathbf x\to \mathbf a}h(\mathbf x) = L.$$
Then
$$\lim_{\mathbf x\to \mathbf a}g(\mathbf x) = L$$.
3. 극한의 존재 (converge)
Limit이 존재할 때 → 수렴(Converge)한다 고 말함.
Limit이 존재하지 않을 시 → 발산(Diverge)한다 고 말함.
limit이 존재할 경우 아래와 같이 서로 다른 경로를 취하더라도 동일한 limit을 가지게 됨.
(scalar function에서는 left side limit과 right side limit이 같음을 보이면 되었던 것이 확장되었음)
앞서 다룬 squeeze theorem은 주로 limit이 존재함을 증명하는데 사용된다.
반면, limit이 존재하지 않는 것을 증명하려면, 극한값이 다른 2개의 경로를 찾으면 됨.
scalar function에서의 극한의 존재.
2024.02.27 - [.../Math] - [Math] Limit of Scalar Function: Left-sided Limit and Right-sided Limit
'... > Math' 카테고리의 다른 글
[Math] Differentiability of MultivariableFunctions (0) | 2023.06.23 |
---|---|
[Math] Continuity (of Multivariate Function) and Contiguity (0) | 2023.06.22 |
[Math] Limit of a multi-variate function and Limit Point (0) | 2023.06.22 |
[Math] Level Set (0) | 2023.06.22 |
[Math] Monomial and Polynomial (단항식 과 다항식) (0) | 2023.06.03 |