1. Covolution의 FT: Multiplication
$$x(t) \leftrightarrow X(\Omega), \quad h(t) \leftrightarrow H(\Omega) \\ h(t) * x(t) \leftrightarrow H(\Omega) X(\Omega)$$
1-1. 증명:
$$\begin{aligned}&\int_{-\infty}^\infty [x(t) * h(t)] e^{-j\Omega t} dt
\\&= \int_{-\infty}^\infty \left[ \int_{-\infty}^\infty x(\tau) h(t-\tau) d\tau \right] e^{-j\Omega t} dt
\\&= \int_{-\infty}^\infty x(\tau) \left[ \int_{-\infty}^\infty h(t-\tau) e^{-j\Omega t} dt \right] d\tau
\\&= \int_{-\infty}^\infty x(\tau) \left[ \int_{-\infty}^\infty h(\tau') e^{-j\Omega (\tau + \tau')} d\tau' \right] d\tau
\\&= \int_{-\infty}^\infty x(\tau) e^{-j\Omega \tau} \left[ \int_{-\infty}^\infty h(\tau') e^{-j\Omega \tau'} d\tau' \right] d\tau
\\&= \int_{-\infty}^\infty x(\tau) e^{-j\Omega \tau} H(\Omega) d\tau
\\&= H(\Omega) X(\Omega)\end{aligned}$$
2. Multiplication FT: Convolution
$$x(t) \leftrightarrow X(\Omega), \quad m(t) \leftrightarrow M(\Omega)\\ x(t)m(t) \leftrightarrow \frac{1}{2\pi} X(\Omega) * M(\Omega)$$
2-1. 증명:
$$\begin{aligned}&\frac{1}{2\pi} \mathcal{F}^{-1}[X(\Omega) * M(\Omega)]
\\&= \frac{1}{2\pi} \int_{-\infty}^\infty \left[ \int_{-\infty}^\infty X(\omega) M(\Omega - \omega) d\omega \right] e^{j\Omega t} d\Omega
\\&= \frac{1}{2\pi} \int_{-\infty}^\infty X(\omega) \left[ \int_{-\infty}^\infty M(\Omega - \omega) e^{j\Omega t} d\Omega \right] d\omega
\\&= \frac{1}{2\pi} \int_{-\infty}^\infty X(\omega) \left[ \int_{-\infty}^\infty M(\tau) e^{j\tau t} d\tau \right] e^{j\omega t} d\omega
\\&= \frac{1}{2\pi} \int_{-\infty}^\infty X(\omega) m(t) e^{j\omega t} d\omega
\\&= m(t) \cdot x(t)\end{aligned}$$
3. LTI System에서 출력신호의 스펙트럼
Time-domain에서
- 입력신호와 impulse response와의 convolution으로 zero-state output이 계산되는 것이
Frequency-domain에서는
- 입력신호의 스펙트럼과 freqeuncy response와의 곱으로 zero-state output의 스펙트럼이 구해짐.
같이보면 좋은 자료
'... > Signals and Systems' 카테고리의 다른 글
[SS] $t^n e^{-at}$의 Laplace Transform (1) | 2024.12.14 |
---|---|
[SS] $e^{-at}$의 Laplace Transform (0) | 2024.12.14 |
[SS] Scaling Property (and Zero-Interpolation): Fourier Transform (0) | 2024.12.02 |
[SS] Discrete System Representation: DE, MA, AR, ARMA, ARIMA, SARIMA (2) | 2024.11.23 |
[SS] Structural Characteristics of Discrete Signals (or Time-series Data) : 작성중 (0) | 2024.11.22 |