Null Space는 주로 matrix 에 관련된 맥락에서 사용되며,
Linear Transform 의 맥락에서는 Kernel 이라고 불림.
Definition : Null Space
The null space of an m×n matrix A, written as Nul(A), is the set of all solutions of the homogeneous equation Ax=0.
In set notation,
Nul (A)={x:x is in Rn and Ax=0}

Null Space 의 차원은 Nullity라고 표현됨:
Nullity=dim(Nul(A))
Theorem 2
The null space of an m×n matrix A is a subspace of Rn.
Equivalently, the set of all solutions to a system Ax=0 of m homogeneous linear equations in n unknowns is a subspace of Rn.
참고로 subspace는 vector space의 subset이면서 다음의 3가지 조건을 만족하면 됨:
1. zero vector 를 element로 가져야 함.
2. vector addition에 닫혀있어야함.
3. scalar multiplication에 닫혀 있어야 함.
2022.04.05 - [.../Math] - [Math] Definition of Vector Space and Sub-Space
[Math] Definition of Vector Space and Sub-Space
Vector 의 엄밀한(?) 정의는 Vector Space의 Element임.즉, Vector를 제대로 이해하려면 Vector Space에 대한 정의를 확실히 이해해야 한다.Vector Space의 정의.Vector Space는 아래를 만족하는 Non-Empty Set을 가르킴.Ve
dsaint31.tistory.com
Proof
Nul(A) is a subset of Rn : matrix 의 column 의 수가 n임.
because A has n columns.
(x is a n×1 matrix or n-entries vector)
We need to show that Nul A satisfies the three properties of a subspace.
1. 0 is in Nul A.
Next, let u and v represent any two vectors in Nul(A).
Then
Au=0 and Av=0
To show that
2. u+v is in Nul (A),
we must show that A(u+v)=0.
- Using a property of matrix multiplication, compute
A(u+v)=Au+Av=0+0=0
- Thus u+v is in Nul(A), and Nul(A) is closed under vector addition.
Finally, if c is any scalar, then which shows that
3. cu is in Nul(A).
A(cu)=c(Au)=c(0)=0
'... > Linear Algebra' 카테고리의 다른 글
[LA] Spectral Theorem for Symmetric Matrix (2) | 2024.07.20 |
---|---|
[LA] Skew-Symmetric Matrix 란 (0) | 2024.07.16 |
[LA] Rank: Matrix의 속성 (0) | 2024.07.08 |
[LA] Matrix Multiplication for Cross Product (0) | 2024.06.28 |
[Math] EVD 및 SVD로 x⊤A⊤Ax의 최소값 및 해 구하기: Total Least Squares (0) | 2024.06.23 |