다음의 sin, cos 및 이들의 선형조합들에 대한 Fourier Transform은 다음과 같음.
1. $\sin \omega_0 t$
$$\begin{aligned} \mathcal{FT}[\sin \omega_0 t] & = \int_{-\infty}^{\infty} \sin \omega_0 t e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} \frac{e^{j\omega_0 t}-e^{-j\omega_0 t}}{2j} e^{-j\Omega t} dt \\ &= \frac{1}{2j} \left\{\int_{-\infty}^{\infty} e^{j\omega_0 t} e^{-j\Omega t} dt - \int_{-\infty}^{\infty} e^{-j\omega_0 t} e^{-j\Omega t} dt \right\}\\ &= \frac{-j}{2}\left\{ 2\pi \delta(\Omega -\omega_0)- 2\pi \delta(\Omega+\omega_0)\right\}\\ &= -j\pi \delta(\Omega -\omega_0) +j\pi \delta(\Omega+\omega_0) \end{aligned}$$
2. $\cos \omega_1 t$
$$\begin{aligned} \mathcal{FT}[\cos \omega_1 t] & = \int_{-\infty}^{\infty} \cos \omega_1 t e^{-j\Omega t} dt \\ &= \int_{-\infty}^{\infty} \frac{e^{j\omega_1 t}+e^{-j\omega_1 t}}{2} e^{-j\Omega t} dt \\ &= \frac{1}{2} \left\{\int_{-\infty}^{\infty} e^{j\omega_1 t} e^{-j\Omega t} dt + \int_{-\infty}^{\infty} e^{-j\omega_1 t} e^{-j\Omega t} dt \right\}\\ &= \frac{1}{2}\left\{ 2\pi \delta(\Omega -\omega_1)+ 2\pi \delta(\Omega+\omega_1)\right\}\\ &= \pi \delta(\Omega -\omega_1) +\pi \delta(\Omega+\omega_1) \end{aligned}$$
3. $1+2\sin \omega_0 t +\cos \omega_1 t$
$$\begin{aligned} & \mathcal{FT}\left[ 1+2\sin \omega_0 t +\cos \omega_1 t \right] \\ &=2\pi \delta(\Omega) +2 \left\{ -j\pi \delta(\Omega -\omega_0) +j\pi \delta(\Omega+\omega_0) \right\} +\pi \delta(\Omega -\omega_1) +\pi \delta(\Omega+\omega_1) \\ \end{aligned}$$
5. $10+3\sin \omega_0 t +\cos \omega_1 t$
$$\begin{align*} &\mathcal{FT} \left[ 10+3\sin \omega_0 t +\cos \omega_1 t \right] \\ &=20\pi\delta(\Omega) +3 \left\{ -j\pi \delta(\Omega -\omega_0) +j\pi \delta(\Omega+\omega_0) \right\} +\pi \delta(\Omega -\omega_1) +\pi \delta(\Omega+\omega_1) \end{align*}$$
참고
'... > Signals and Systems' 카테고리의 다른 글
[SS] Fourier Transform of sinc (1) | 2022.09.28 |
---|---|
[SS] Fourier Transform of Pulse Signal (0) | 2022.09.28 |
[SS] from CTFS to CTFT (0) | 2022.09.27 |
[SS] Ch02 : 연습문제풀이 (1) | 2022.09.21 |
[SS] Orthogonal Function: Complex Exponential Function (2) | 2022.09.21 |