[SS] Differential Equation : 2nd Canonical Form
·
.../Signals and Systems
다음과 같은 미분 방정식을 2nd canonical form으로 표현. $$\begin{aligned}(D^2+3D+2) y(t) &= D x(t)\end{aligned}$$ $D$ : 미분연산자. 우선 적분기를 사용하기 위해 미분연산자를 제거. $$D^{-2}[(D^2+3D+2) y(t)] = D^{-2}[D x(t)] \\ (1+3D^{-1}+2D^{-2}) y(t) = D^{-1} x(t)$$ 중간변수 $v(t)$를 도입. $$(1+3D^{-1}+2D^{-2}) y(t) = D^{-1} x(t) \\ y(t)=\frac{D^{-1}}{1+3D^{-1}+2D^{-2}} x(t) \\ y(t) = D^{-1} \frac{x(t)}{1+3D^{-1}+2D^{-2}} \\ y(t) = D^{-1} v(t)..