1. 다음 X(s)의 Inverse Laplace Transform을 구하라.
X(s)=8s2−7s−6s3−s2−6s sol. X(s)=8s2−7s−6s3−s2−6s=8s2−7s−6s(s−3)(s+2)=As+Bs−3+Cs+2
distinct pole의 경우로서 다음과 같이 A,B,C를 구할 수 있음.
A=8s2−7s−6(s−3)(s+2)|s=0=0−0−6−3⋅2=1
B=8s2−7s−6(s)(s+2)|s=3=72−21−63⋅5=4515=3
C=8s2−7s−6(s)(s−3)|s=−2=32+14−6−2⋅−5=4010=4
즉, X(s) 는 다음과 같음.
X(s)=1s+3s−3+4s+2
x(t)는 다음과 같음. (Laplace Transform Table참고)
x(t)=u(t)+3e−(−3)tu(t)+4e−2tu(t)
ROC는 다음과 같음. Re(s)>0Re(s)>−(−3)=3Re(s)>−2∴
2. 다음 X(s)의 Inverse Laplace Transform을 구하라.
X(s)=\frac{8s+10}{(s+1)(s+2)^3} sol. \begin {aligned} X(s) &= \frac{8s+10}{(s+1)(s+2)^3} \\ &= \frac{A}{(s+1)}+\frac{B_1}{(s+2)}+\frac{B_2}{(s+2)^2}+\frac{B_3}{(s+2)^3}\end{aligned}
A와 B_3는 distinct poles의 경우와 마찬가지로 구할 수 있음.
\begin {aligned} A &= \left . X(s)(s+1) \right |_{s=-1} \\ &= \left . \frac{8s+10}{(s+1)(s+2)^3}(s+1) \right |_{s=-1} \\ &= \frac {2}{1^3} \\ &= 2 \end {aligned}
\begin {aligned} B_3 &= \left . X(s)(s+2)^3 \right |_{s=-2} \\ &= \left . \frac{8s+10}{(s+1)(s+2)^3}(s+2)^3 \right |_{s=-2} \\ &= \left . \frac{8s+10}{(s+1)} \right |_{s=-2} \\ &= \frac {8\cdot-2+10}{(-1)} \\ &= 6 \end {aligned}
B_2는 다음과 같이 한번 미분을 수행하여 구함.
\begin {aligned} B_2 &= \left . \frac{ \text{d}}{\text{d}s} \left[ X(s)(s+2)^3\right] \right |_{s=-2} \\ &= \left . \frac{8(s+1)-(8s+10)\cdot1}{(s+1)^2} \right |_{s=-2} \\ &= \frac {-2}{1} \\ &= -2 \end {aligned}
B_1은 다음과 같이 구함.
\begin {aligned} B_1 &= \left . \frac{1}{2}\frac{ \text{d}^2}{\text{d}s^2} \left[ X(s)(s+2)^3\right] \right |_{s=-2} \\ &= \frac{1}{2}\left . \frac{ \text{d}}{\text{d}s}\frac{8(s+1)-(8s+10)\cdot1}{(s+1)^2} \right |_{s=-2} \\ &= \frac{1}{2}\left . \frac{ \text{d}}{\text{d}s}\frac{-2}{(s+1)^2} \right |_{s=-2} \\ &= \frac{1}{2} \left .\frac {-2\cdot-2}{(s+1)^3} \right |_{s=-2}\\ &= \left .\frac {2}{(s+1)^3} \right |_{s=-2}\\ &= -2 \end {aligned}
이를 통해, X(s), x(t)는 다음과 같음.
\begin {aligned} X(s) &= \frac{8s+10}{(s+1)(s+2)^3} \\ &= \frac{A}{(s+1)}+\frac{B_1}{(s+2)}+\frac{B_2}{(s+2)^2}+\frac{B_3}{(s+2)^3}\\ &= \frac{2}{(s+1)}+\frac{-2}{(s+2)}+\frac{-2}{(s+2)^2}+\frac{6}{(s+2)^3} \\ x(t)&= 2e^{-t} u(t)-2e^{-2t}u(t) -2te^{-2t}u(t)+6\cdot\frac{1}{2}t^2 e^{-2t}u(t) \\ &= 2e^{-t} u(t)-2e^{-2t}u(t) -2te^{-2t}u(t)+3t^2 e^{-2t}u(t) \end {aligned}
'... > Signals and Systems' 카테고리의 다른 글
[SS] Laplace Transform : \cos^2 \Omega_0 t u(t) (0) | 2022.10.24 |
---|---|
[SS] Laplace Transform Table (0) | 2022.10.24 |
[SS] Cross Correlation (2) | 2022.10.14 |
[SS] Dirichlet Conditions (디리클레 조건) (0) | 2022.10.12 |
[SS] Fourier Transform of Constant Function (1) | 2022.09.28 |