728x90
대표적인 경우들은 다음과 같음.
$$\underset{x\to 0}{\lim} \frac{\log(1+x)}{x}=1$$
$$\underset{x\to 0}{\lim} \frac{\log_a(x+1)}{x} = \frac{1}{\log a}$$
$$\underset{x\to 0}{\lim} \frac{e^x -1}{x}=1$$
$$\underset{x\to 0}{\lim} \frac{a^x -1}{x}=\log a$$
반응형
'... > Math' 카테고리의 다른 글
[Math] Continuous 와 Differentiable 의 관계 (0) | 2024.03.27 |
---|---|
[Math] Derivatives of Exponential and Logarithmic Functions (0) | 2024.02.28 |
[Math] The Key Rules of Differentiation (0) | 2024.02.28 |
[Math] Cauch’s Mean Value Theorem (1) | 2024.02.27 |
[Math] Intermediate Value Theorem, Mean Value Theorem and Rolle’s Theorem (1) | 2024.02.27 |