[LA] Null Space

2024. 7. 8. 13:09·.../Linear Algebra
728x90
728x90

Null Space는 주로 matrix 에 관련된 맥락에서 사용되며,

Linear Transform 의 맥락에서는 Kernel 이라고 불림.


Definition : Null Space

The null space of an $m \times n$ matrix $A$, written as Nul$(A)$, is the set of all solutions of the homogeneous equation $A\textbf{x}=\textbf{0}$.

In set notation,

$$\text{Nul }(A) = \left\{ \textbf{x}:\textbf{x} \text{ is in }\mathbb{R}^n \text{ and }
A\textbf{x}=\textbf{0} \right\}$$

Kernel and Null space

Null Space 의 차원은 Nullity라고 표현됨:

$$\text{Nullity} = \text{dim}(\text{Nul}(A))$$


Theorem 2

The null space of an $m \times n$ matrix $A$ is a subspace of $\mathbb{R}^n$.
Equivalently, the set of all solutions to a system $A\textbf{x}=\textbf{0}$ of $m$ homogeneous linear equations in $n$ unknowns is a subspace of $\mathbb{R}^n$.

 

참고로 subspace는 vector space의 subset이면서 다음의 3가지 조건을 만족하면 됨:

1. zero vector 를 element로 가져야 함.

2. vector addition에 닫혀있어야함.

3. scalar multiplication에 닫혀 있어야 함.

2022.04.05 - [.../Math] - [Math] Definition of Vector Space and Sub-Space

 

[Math] Definition of Vector Space and Sub-Space

Vector 의 엄밀한(?) 정의는 Vector Space의 Element임.즉, Vector를 제대로 이해하려면 Vector Space에 대한 정의를 확실히 이해해야 한다.Vector Space의 정의.Vector Space는 아래를 만족하는 Non-Empty Set을 가르킴.Ve

dsaint31.tistory.com


Proof

Nul$(A)$ is a subset of $\mathbb{R}^n$ : matrix 의 column 의 수가 $n$임.
because $A$ has $n$ columns.
($\textbf{x}$ is a $n \times 1$ matrix or $n$-entries vector)

 

We need to show that Nul $A$ satisfies the three properties of a subspace.

1. $\textbf{0}$ is in Nul $A$.


Next, let $\bf{u}$ and $\bf{v}$ represent any two vectors in Nul$(A)$.

Then

$$A\textbf{u}=\textbf{0} \text{ and } A\textbf{v}=\textbf{0}$$

To show that

2. $\textbf{u} + \textbf{v}$ is in Nul $(A)$,

we must show that $A(\textbf{u}+\textbf{v})=\textbf{0}$.

  • Using a property of matrix multiplication, compute

$$
A(\textbf{u}+\textbf{v})= A\textbf{u} + A\textbf{v} = \textbf{0}+\textbf{0} = \textbf{0}
$$

  • Thus $\textbf{u}+\textbf{v}$ is in Nul$(A)$, and Nul$(A)$ is closed under vector addition.

Finally, if $c$ is any scalar, then which shows that

3. $c\textbf{u}$ is in Nul$(A)$.

$$
A(c\textbf{u}) = c(A\textbf{u}) = c(\textbf{0}) = \textbf{0}
$$


 

'... > Linear Algebra' 카테고리의 다른 글

[LA] Spectral Theorem for Symmetric Matrix  (2) 2024.07.20
[LA] Skew-Symmetric Matrix 란  (0) 2024.07.16
[LA] Rank: Matrix의 속성  (0) 2024.07.08
[LA] Matrix Multiplication for Cross Product  (0) 2024.06.28
[Math] EVD 및 SVD로 $\textbf{x}^\top A^\top A\textbf{x}$의 최소값 및 해 구하기: Total Least Squares  (0) 2024.06.23
'.../Linear Algebra' 카테고리의 다른 글
  • [LA] Spectral Theorem for Symmetric Matrix
  • [LA] Skew-Symmetric Matrix 란
  • [LA] Rank: Matrix의 속성
  • [LA] Matrix Multiplication for Cross Product
dsaint31x
dsaint31x
    반응형
    250x250
  • dsaint31x
    Dsaint31's blog
    dsaint31x
  • 전체
    오늘
    어제
    • 분류 전체보기 (739)
      • Private Life (13)
      • Programming (56)
        • DIP (104)
        • ML (26)
      • Computer (119)
        • CE (53)
        • ETC (33)
        • CUDA (3)
        • Blog, Markdown, Latex (4)
        • Linux (9)
      • ... (350)
        • Signals and Systems (103)
        • Math (171)
        • Linear Algebra (33)
        • Physics (42)
        • 인성세미나 (1)
      • 정리필요. (54)
        • 의료기기의 이해 (6)
        • PET, MRI and so on. (1)
        • PET Study 2009 (1)
        • 방사선 장해방호 (4)
        • 방사선 생물학 (3)
        • 방사선 계측 (9)
        • 기타 방사능관련 (3)
        • 고시 (9)
        • 정리 (18)
      • RI (0)
      • 원자력,방사능 관련법 (2)
  • 블로그 메뉴

    • Math
    • Programming
    • SS
    • DIP
  • 링크

    • Convex Optimization For All
  • 공지사항

    • Test
    • PET Study 2009
    • 기타 방사능관련.
  • 인기 글

  • 태그

    Probability
    Python
    검사
    numpy
    Programming
    signals_and_systems
    opencv
    function
    인허가제도
    signal_and_system
    fourier transform
    Term
    SIGNAL
    Optimization
    math
    Convolution
    SS
    linear algebra
    Vector
    random
  • 최근 댓글

  • 최근 글

  • hELLO· Designed By정상우.v4.10.3
dsaint31x
[LA] Null Space
상단으로

티스토리툴바