Vector space $V$의 모든 vector $\textbf{u}$, $\textbf{v}$에 대해 성립하는 다음의 부등식 관계를 의미함.
$$|\langle\textbf{v},\textbf{u}\rangle | \le \|\textbf{v} \| \|\textbf{u}\|$$
where
- $\langle \textbf{u}, \textbf{v} \rangle$ : vector $\textbf{u}$와 $\textbf{v}$의 inner product.
- $|x|$ : scalar $x$에 대한 absolute value.
- $\|\textbf{u}\|$: $\textbf{u}$의 norm.
증명.
$\textbf{u} = \textbf{0}$ 인 경우, Cauchy-Schwarz Inequality의 양 side가 0이되어 등식이 성립.
$\textbf{u} \ne \textbf{0}$ 인 경우, $\textbf{u}$에 의한 spanned subspace $W$에 대해 $\textbf{v}$를 projection으로부터 Cauchy-Schwarz Inequaility가 유도됨.
$$ \begin{aligned}\|\text{proj}_W\textbf{v}\|&=\left \|\frac{\langle\textbf{v},\textbf{u}\rangle}{\langle \textbf{u},\textbf{u} \rangle}\textbf{u} \right\| \quad \leftarrow \|c\textbf{u}\|=|c|\|\textbf{v}\|\\ &= \left| \frac{\langle \textbf{v}, \textbf{u} \rangle}{\langle \textbf{u}, \textbf{u} \rangle} \right| \|\textbf{u}\| \\ &= \frac{|\langle\textbf{v},\textbf{u}\rangle|}{|\langle \textbf{u},\textbf{u} \rangle|}\|\textbf{u}\| \\ &= \frac{|\langle\textbf{v},\textbf{u}\rangle|}{\|\textbf{u} \|^2}\|\textbf{u}\| \\ &= \frac{|\langle\textbf{v},\textbf{u}\rangle|}{\|\textbf{u} \|} \end{aligned}$$
$\| \text{proj}_W \textbf{v}\| \le \|\textbf{v}\|$가 항상 성립하므로 다음을 얻을 수 있음.
$$\frac{ | \langle \textbf{v}, \textbf{u} \rangle | }{\| \textbf{u} \|} \le \|\textbf{v}\| \\ | \langle \textbf{v}, \textbf{u} \rangle | \le \|\textbf{v} \| \|\textbf{u}\| $$
참고자료
https://blog.naver.com/skkong89/222469897198
https://bme808.blogspot.com/2022/10/norm.html
'... > Math' 카테고리의 다른 글
[Math] Derivative of Logistic Function (0) | 2023.09.25 |
---|---|
[Math] Error Function (0) | 2023.09.24 |
[Math] Bernoulli Distribution (베르누이 분포) (0) | 2023.08.17 |
[DL] Softsign : tanh의 유사품 (0) | 2023.08.15 |
[Math] Random Variable의 연산에 따른 Mean과 Variance. (0) | 2023.08.14 |