Loading [MathJax]/jax/output/CommonHTML/jax.js
[SS] Properties of (unilateral) Laplace Transform
·
.../Signals and Systems
Unilateral Laplace Transform의 주요 성질. Linearity ax1(t)+bx2(t)aX1(s)+X2(s) Time Shifting x(tt0)u(tt0)est0X(s) s-domain Shifting (or Complex Shifting) $$x( t ) e^{ s_0 t} \longleft..
[SS] Laplace Transform : sin2Ω0tu(t)
·
.../Signals and Systems
sin2t=1cos2t2 를 이용한다. sin2Ω0t는 다음과 같이 전개가 가능함. sin2(Ω0t)=1cos2Ω0t2=1212cos2Ω0t 이를 (Unilateral )Laplace transform하면 다음과 같음. $$\begin{aligned}\mathscr{L}\left[\sin^2\Omega_0 t\right]&=\mathscr{L}\left[\frac{1}{2}\right]-\mathscr{L}\left[\frac{1}{2}\cos 2\Omega_0t\right]\\ &=\..
[SS] Laplace Transform : cos2Ω0tu(t)
·
.../Signals and Systems
cos2t=1+cos2t2 를 이용한다. cossΩ0t는 다음과 같이 전개가 가능함. cos2(Ω0t)=1+cos2Ω0t2=12+12cos2Ω0t 이를 (Unilateral )Laplace transform하면 다음과 같음. $$\begin{aligned}\mathscr{L}\left[\cos^2\Omega_0 t\right]&=\mathscr{L}\left[\frac{1}{2}\right]+\mathscr{L}\left[\frac{1}{2}\cos 2\Omega_0t\right]\\ &=\..
[SS] Laplace Transform Table
·
.../Signals and Systems
SignalLaplace TransformRoC...1u(t)1sRe(s)>0 2u(t)u(ta)1eassRe(s)>0 3δ(t)1all complex plane 4δ(ta)easall complex plane 5eatu(t)1s+aRe(s)>a참고6cosΩ0tu(t)ss+Ω20Re(s)>0 7sinΩ0tu(t)Ω0s+Ω20Re(s)>0 8tnu(t)$\frac{n!}{s^{n+1}}..
[SS] Ch04 Ex : Inverse Laplace Transform
·
.../Signals and Systems
1. 다음 X(s)의 Inverse Laplace Transform을 구하라. X(s)=8s27s6s3s26s sol. X(s)=8s27s6s3s26s=8s27s6s(s3)(s+2)=As+Bs3+Cs+2 distinct pole의 경우로서 다음과 같이 A,B,C를 구할 수 있음. $$ \begin {aligned} A&= \left. \frac{8s^2-7s-6}{(s-3)(s+2)} \right |_{s=0} \\ &= \frac{0-0-6}{-3\cdot 2} \\ &= 1 \end..