[SS] Fourier Transform Table
·
.../Signals and Systems
0. Fourier Transform Table $x(t)$$X(\omega)$ 1$e^{-a t}u(t), a>0$$\frac{1}{a+j\omega}$ref.2$e^{a t} u(-t) , a>0$$\frac{1}{a-j\omega}$ 3$e^{-a \vert t\vert}, a>0$$\frac{2a}{a^2+\omega^2}$ 4$te^{-a t}u(t), a>0$$\frac{1}{ (a+j\omega)^2}$ 5$t^ne^{-a t}u(t), a>0$$\frac{n!}{ (a+j\omega)^{n+1}}$ 6$\delta(t)$$1$ref.7$1$$2\pi \delta(\omega)$ref.8$e^{j\omega_0t}$$2\pi \delta (\omega-\omega_0) $ref.9$\text..
[SS] Laplace Transform Table
·
.../Signals and Systems
SignalLaplace TransformRoC...1$u(t)$$\frac{1}{s}$$\text{Re}(s)>0$ 2$u(t)-u(t-a)$$\frac{1-e^{-as}}{s}$$\text{Re}(s)>0$ 3$\delta(t)$1all complex plane 4$\delta(t-a)$$e^{-as}$all complex plane 5$e^{-at}u(t)$$\frac{1}{s+a}$$\text{Re}(s)>-a$참고6$\cos\Omega_0t u(t)$$\frac{s}{s+\Omega_0^2}$$\text{Re}(s)>0$ 7$\sin\Omega_0t u(t)$$\frac{\Omega_0}{s+\Omega_0^2}$$\text{Re}(s)>0$ 8$t^nu(t)$$\frac{n!}{s^{n+1}}..